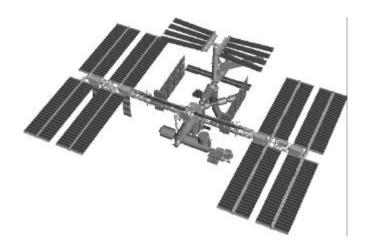
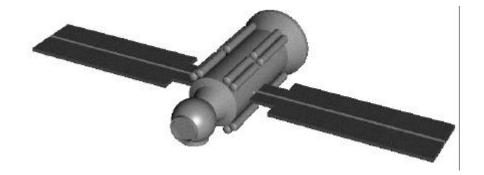
NASA Facts

National Aeronautics and Space Administration


Lyndon B. Johnson Space Center


International Space Station

June 1997

INTERNATIONAL SPACE STATION ASSEMBLY SEQUENCE (9/30/97 Rev C)

Date	Flight	Launch Vehicle	Configuration	Element(s)	Rationale
June 1998	1A/R	Russian		Functional Cargo Block (FGB)	 FGB is a self-supporting active vehicle. It provides propulsive control capability and power through the early assembly stages. It provides fuel storage capability. It provides rendezvous and docking capability to the Service Module.
July 1998	2A	US Orbiter		• Node 1 • Pressurized Mating Adapters -1 & -2	 Launched passive with PMA-1, PMA-2 and 1 stowage rack. PMA-1 provides the interfaces between US and Russian elements. PMA-2 provides a Shuttle docking location. Eventually, Node 1's six ports will provide connecting points for the Z1 truss; U.S. lab; airlock; cupola; Node 3; and the early MPLM as well as the FGB.
Dec 1998	1R	Russian		Service Module	 Primary Russian element. It provides Environmental Control & Life Support System (ECLSS) functions to all elements. Primary docking for Progress-type resupply vehicles Provides propulsive attitude control and reboost capability
Dec 1998	2A.1	US Orbiter		Spacehab Double Cargo Module	Logistics and resupply cargo
Jan 1999	3A	US Orbiter		Integrated Truss Structure (ITS) Z1 PMA-3 Ku-band Control Moment Gyros (CMGs)	 ITS Z1 allows the temporary installation of the P6 Photovoltaic (PV) module to Node 1 for early US based power Ku-band communication system supports early science capability on 6A CMGs provide non-propulsive attitude control when activated on 5A PMA-3 provides a Shuttle docking for the P6 PV Module on 4A and Lab installation on flight 5A
Jan 1999	2R	Russian		Soyuz	Establishes first station manning with three-person crew Provides assured crew return capability without the Orbiter present

Date	Flight	Launch Vehicle	Configuration	Element(s)	Rationale
April 1999	4A	US Orbiter		• ITS P6	 Establishes initial US PV Module based power capability Installed in a temporary location on top of the Z1 Truss until Flight 1J/A when it is permanently attached to the P5 Truss Includes 2 PV Thermal Control System (TCS) radiators for early active thermal control. Also, the S-band communications system is activated.
May 1999	5A	US Orbiter		• Lab	 Provides initial US user capability Launched with 5 system racks preintegrated CMGs are activated
June 1999	6A	US Orbiter		MPLM (Lab outfitting flight) Ultra High Frequency (UHF) antenna Space Station Remote Manipulating System (SSRMS)	 Adds US LAB outfitting with 6 system racks, one storage rack UHF antenna provides space-to-space communications capability for US based EVA Delivers Canadian SSRMS needed to perform assembly operations on later flights
Aug 1999	7A	US Orbiter		 Joint Airlock High Pressure Gas Assembly	 Airlock provides Station-based EVA capability for US and Russian suits High pressure gas assembly augments the Service Module gas resupply system
			Phase	II Compl	e t e
Nov 1999	7A.1	US Orbiter		• MPLM	 U.S. stowage racks, ISPRs Two additional battery sets are delivered and installed on the P6 PV Module providing a full complement of batteries
Dec 1999	4R	Russian		• Docking Compartment 1	Provides egress, ingress for Russian based Extravehicular Activity (EVA) and a Soyuz docking port

Date	Flight	Launch Vehicle	Configuration	Element(s)	Rationale
Jan 2000	UF-1	US Orbiter		MPLM (ISPRs) PV Module batteries	Provides payload utilization delivering US Lab ISPR racks; two storage racks
Feb 2000	8A	US Orbiter		• ITS S0 • Mobile Transporter (MT)	 ITS S0 provides attachment and umbilicals between pressurized elements and permanent truss-mounted distributed system/utilities Airlock spur provides an EVA translation path from the airlock to the truss The MT which provides the truss translation capability for the Mobile Servicing System is also delivered
Mar 2000	UF-2	US Orbiter		• MPLM (ISPRs) • MBS • Lab Sys.	 Provides additional payloads MBS provides truss based SSRMS capability Three additional stowage racks are delivered
June 2000	9A	US Orbiter		• ITS S1 • CETA Cart A	 Delivers the starboard US Central Thermal Control System Radiators remain stowed until power system is activated on flight 12A Provides second string of S-band capability The CETA Cart provides EVA crew translation capability along the truss
July 2000	9A.1	US Orbiter		SPP with four solar arrays	Delivery of the Russian power/control mast with four solar arrays providing additional Russian power Delivers European Robotic Arm (ERA)
Oct 2000	11A	US Orbiter		ITS P1 CETA Cart B	 Delivers the port US central thermal control system Radiators remain stowed until power system is activated on flight 12A The CETA Cart provides EVA crew translation capability along the truss

Date	Flight	Launch Vehicle	Configuration	Element(s)	Rationale
Nov 2000	12A	US Orbiter		• ITS P3/P4	Provides additional US power Port & starboard central TCS radiators are deployed and activated Transition from early P6 based power to permanent truss based power begins
Dec 2000	3R	Russian		Universal Docking Module	Provides docking locations for Russian Research Modules, Life Support Modules and a second docking compartment (DC2) for Soyuz vehicles
Dec 2000	5R	Russian		• Docking Compartment 2 (DC2)	Replaces discarded DC1
Mar 2001	13A	US Orbiter	1411	• ITS S3/S4	Provides additional US power The P6 PV module solar arrays are retracted in preparation for relocation on 1 J/A
Apr 2001	10A	US Orbiter		Node 2Nitrogen tank assembly	 Node 2 provides attach locations for the Japanese Experiment Module, the ESA Columbus Orbital Facility, the Centrifuge Accomodation Module and later Mini-Pressurized Logistics Modules Establishes the primary docking location for the Shuttle Nitrogen tank assembly added to sidewall carrier
May 2001	1J/A	US Orbiter		 JEM ELM PS ITS P5 High Pressure O2 tanks	 Delivers 4 JEM system racks and 1 stowage rack allowing 1 fault-tolerant JEM PM activation on the next flight 3 JEM ISPRs delivered providing utilization on the next flight ITS P5 spacer provides clearance between port PV modules enabling P6 PV module relocation

Date	Flight	Launch Vehicle	Configuration	Element(s)	Rationale
Aug 2001	1Ј	US Orbiter		• JEM PM	Japanese Experiment Module is delivered & activated (four JEM sys. racks) JEM RMS is delivered & activated
Sep 2001	UF-3	US Orbiter		• MPLM (ISPRs)	Provides for payload resupply and/or changeout
Jan 2002	UF-4	US Orbiter		• Express Pallet • SLP (SPDM, ATA, HP Gas)	 Express Pallet transports external payloads Special Purpose Dexterous Manipulator ("Canada Hand") provides robotics maintenance capability Spacelab Palllet (SLP) carries Special Purpose Dexterous Manipulator ("Canada Hand") which provides robotics maintenance capability; Ammonia Tank Assembly (ATA); and High Pressure Gas O2 tank.
Feb 2002	2J/A	US Orbiter		 JEM EF ELM ES PV Module Batteries	Delivers JEM exposed experimental facilities PV batteries complete battery complements on PV modules P4 & S4
Feb 2002	9R.1	Russian		Docking & Stowage Module-1	Mounted to the FGB nadir port Provides additional on-orbit stowage and a Soyuz docking location
May 2002	9R.2	Russian		Docking & Stowage Module- 2	Mounted to Docking and Stowage Module-1 Provides additional on-orbit stowage and a Soyuz docking location

Date	Flight	Launch Vehicle	Configuration	Element(s)	Rationale
May 2002	14A	US Orbiter		 Cupola and Port Rails (on SLP) 4 SPP Solar Arrays 	 Cupola provides direct viewing capability for some robotics operations and payload viewing Completes Solar Power Platform solar arrays
June 2002	UF-5	US Orbiter		MPLM (ISPRs) Express Pallet	Provides for payload resupply and/or changeout Express Pallet transports external payloads
July 2002	20A	US Orbiter		• Node 3	 Delivers Node 3 to be attached underneath Node 1. 2 avionics and 2 ECLSS racks delivered. Node 3 provides attachment points for the U.S. Habitation Module, the Crew Return Vehicle and PMA-3
Aug 2002	8R	Russian		Research Module 1	Provides Russian experiments and research facilities
Oct 2002	1E	US Orbiter		Columbus Orbital Facility	European Space Agency (ESA) research facility provides additional research capability
Nov 2002	10R	Russian		• Research Module 2	Provides Russian experiments and research facilities

Date	Flight	Launch Vehicle	Configuration	Element(s)	Rationale
Nov 2002	17A	US Orbiter		• MPLM • Node, Lab racks	 Outfits Node 3 with 4 racks – 2 Environmental Control and Life Support System racks and 2 Flight Crew Equipment racks (waste collection system and galley) Three Crew Health Care System racks delivered Delivers 1 U.S. Lab rack, 1 stowage rack, ISPRs
Jan 2003	11R	Russian		• Life Support Module 1 (LSM1)	Life Support Module provides oxygen regeneration capability & other life support functions
Mar 2003	12R	Russian		• Life Support Module 2 (LSM2)	Second Life Support Module provides oxygen regeneration capability & other life support functions
Mar 2003	18A	US Orbiter		• CRV 1	Crew Return Vehicle attached to the station provides additional 4-person crew return capability added to already existing 3-person Soyuz crew return capability
Apr 2003	19A	US Orbiter		• MPLM	 Delivers 4 crew quarters racks to be placed in Node 2 and provide for transition to 6-person crew Delivers 6 U.S. stowage racks
Jul 2003	15A	US Orbiter		• PV Module S6	Fourth U.S. truss-based PV module completing the major power system elements Starboard MT/CETA rails

Date	Flight	Launch Vehicle	Configuration	Element(s)	Rationale
Aug 2003	UF-6	US Orbiter		• MPLM (ISPRs)	Provides for payload resupply and/or changeout Delivers two photovoltaic batteries to complete station battery outfitting
Oct 2003	UF7	US Orbiter		Centrifuge Accomodations Module	Centrifuge Accommodations Module attached to Node 2 zenith port enhances user research capabilities
Dec 2003	16A	US Orbiter		• U.S. Habitation Module	Delivers U.S. Habitation Module to enhance crew accomodations.

NOTES:

• Additional Progress, Soyuz, H-II Transfer Vehicle and Automated Transfer Vehicle flights for crew transport, logistics and resupply are not listed.